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Abstract 

 

 This paper derives semi-closed-form solutions to a wide variety of interest rate 

derivatives prices under stochastic volatility in affine term structure models.  We first 

derive the Frobenius series solution to the cross-moment generating function, and then 

invert the related characteristic function using the Gauss-Laguerre quadrature rule for the 

corresponding cumulative probabilities. This paper values options on discount bonds, 

coupon bond options, swaptions, interest rate caps, floors, and collars etc. The valuation 

approach suggested in this paper is found to be both accurate and fast and the approach 

compares favorably with some alternative methods in the literature. The valuation 

approach in this study can be used to price mortgage-backed securities (MBSs) and asset-

backed securities (ABSs). The approach can also be used to value derivatives on other 

assets such as commodities. Finally, the approach in this paper is useful for the risk 

management of fixed income portfolios and financial planning in general. Future research 

could extend the approach adopted in this paper to some non-affine term structure models 

such as quadratic models etc. 

 

Keywords:  Characteristic functions, Frobenius series solution, Gauss-Laguerre                     

quadrature rule, Interest rate derivatives, and Stochastic volatility 
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1. Introduction 

 

It is widely accepted in the literature that interest rate volatility is stochastic (see, 

among others, Andersen and Lund (1997), Ball and Torous (1999), and Kalimipalli and 

Susmel (2004)). For example, Figures 1 and 2 plot the time series of the weekly 3-month 

U.S. T-bill rates as well as their first order differences over the time period of January 

1954 to December 2006 (source of data: H.15 release at the Federal Reserve Board). 

Table 1 shows the summary statistics for both series. It is evident from both the figures 

and the descriptive statistics that the interest rates series are not Gaussian and that their 

volatility is changing through time. The empirical evidence thus suggests that it is 

important to model the stochastic volatility of interest rates. 

[Figures 1 and 2 are about here.] 

[Table 1 is about here.] 

Modeling interest rate volatility is also critical from an asset pricing perspective. 

Almost all fixed-income securities contain embedded options, for example, callable 

bonds and putable bonds etc. Since prices of the embedded options (e.g. call and put 

options) depend on interest rate volatility, measuring the sensitivity of a security's value 

to interest rate volatility is therefore central to the pricing of fixed-income securities. 

Second, interest rate volatility is vital to the valuation of all kinds of interest rate 

derivatives. Finally, modeling interest rate volatility has a wide variety of applications in 

managing fixed-income portfolios, including portfolio hedging, portfolio indexing, and 

portfolio immunization, to name just a few. Indeed, the ability to effectively model 

interest rate volatility is fundamental to virtually all areas of fixed-income security and 

portfolio analysis. Not surprisingly, the academic literature on modeling interest rate 

volatility and pricing interest rate derivatives has been growing fast. 

In this paper, we provide semi-closed-form solutions to the prices of various 

interest rate derivatives under stochastic interest rate volatility. Different from all the 

studies reviewed below, our approach is for a stochastic volatility interest rate model 

where the interest rate volatility is modeled by a separate process (the Fong and Vasicek 

(1991) model in particular)[1]. In our approach, we first derive the Frobenius series 

solution to the moment generating function of the zero-coupon bond price. Then, we 
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invert the related characteristic function using the Gauss-Laguerre quadrature rule to 

recover the corresponding cumulative probabilities, which are used to compute the prices 

of different interest rate derivatives. Numerical examples show that our approach is easier 

to implement, fast, and accurate, and it compares favorably with some alternative 

approaches in the literature. However, it is important to note that our approach need not 

be restricted to the interest rate model considered in this paper. In fact, it can be readily 

generalized to other affine term structure models as well, including those models in 

which stochastic volatility is not explicitly specified. 

A number of recent studies have also examined the pricing of options on coupon 

bonds. Jamshidian (1989), for instance, argues that an option on a coupon bond can be 

decomposed into a portfolio of options on discount bonds. Provided that there exists a 

closed-form solution to discount bond option price, we can solve for the value of a 

coupon bond option analytically. Jamshidian illustrates his approach in the context of the 

constant volatility Vasicek (1977) model, and his approach is valid for any single-factor 

interest rate model. 

Wei (1997) develops an approximation for coupon bond options prices based on 

closed-form solutions for the corresponding discount bond options and a duration 

measure defined in his paper. He applies his approach to the constant volatility model in 

Vasicek (1977) and the model in Cox, Ingersoll, and Ross (1985, CIR hereafter) where 

volatility, though not a constant, is not modeled as a separate factor. Munk (1999) 

extends the approach in Wei (1997) and develops a method known as the stochastic 

duration approach. Munk applies his method to a number of multi-factor models 

including the deterministic volatility models in Ho and Lee (1986), Hull and White 

(1990), and Heath, Jarrow, and Morton (1992), and the model in Longstaff and Schwartz 

(1992). Singleton and Umantsev (2002) propose an approximation to the prices of 

European options on coupon bonds where the underlying short rate is an affine 

combination of the CIR-type square root processes. Stochastic volatility of interest rates 

is present in their framework only because in a CIR-type process volatility depends on 

the level of state variable (e.g. short rate) and is thus time-varying. However, in this 

framework volatility can not move independently of the state variable. None of the works 

just reviewed models interest rate volatility as a distinct process. In contrast, in the Fong 
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and Vasicek (1991, FV hereafter) model considered in this paper, interest rate volatility is 

modeled as a separate process (see equations (1) and (2) in Section 2 below). 

  The contribution of this paper is two-fold. First, we extend the work of Fong and 

Vasicek (1991) and show how to value a wide range of interest rate derivatives within 

their stochastic volatility model. Second, we provide a viable alternative to some other 

approaches to the pricing of interest rate derivatives, for example, the Monte Carlo 

method proposed in Clewlow and Strickland (1997). Our paper also complements the 

recent work of Chacko and Das (2002), who suggest a general approach to valuing 

interest rate derivatives within the affine framework, in that we provide semi-closed-form 

solutions to interest rate derivatives prices under stochastic volatility and present a 

number of numerical examples to illustrate our approach.  

The rest of the paper is organized as follows. Section 2 introduces the interest rate 

model used in this paper. Section 3 provides the solutions to options on zero-coupon 

bonds. Section 4 extends the approach to value coupon bond options and discusses the 

valuation of swaptions, interest rate caps, floors, and collars. Section 5 presents some 

numerical examples to assess the accuracy and efficiency of the proposed approach. 

Finally, Section 6 concludes the article. The computational details are contained in the 

Appendices. 

 

2. The Fong and Vasicek (1991) interest rate model 

 

Fong and Vasicek (1991) explicitly incorporate the stochastic volatility of interest 

rates as a separate factor (in addition to the short rate itself) and propose a two-factor 

model of interest rates. Their model is introduced as follows. 

Under the physical (or actual) probability measure P, the instantaneous nominal 

riskless interest rate is denoted by rt, and is assumed to follow the diffusion processes 

,)( tttt dWvdtrrdr +−= α      (1) 

,)( tttt dZvdtvvdv ξγ +−=      (2) 

where the two Brownian motions Wt and Zt are correlated with a coefficient of ρ. In 

equation (2), vt denotes the instantaneous variance of the risk free rate rt and is modeled 
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using a distinct stochastic process, separate from the process for rt in (1). It follows that 

the volatility of interest rate rt is also stochastic. In equations (1) and (2),  α and γ are the 

speed of mean reversion of factors rt and vt, respectively; and r  and v  can be interpreted 

as the long-run mean of rt and vt, respectively. The specification in equations (1) and (2) 

belongs to the class of exponential affine (or simply affine) term structure of interest rate 

models[2]. 

 We write the processes in equations (1) and (2) under the risk-neutral probability 

measure Q as  

( ) ,ˆ)( ttttt Wdvdtvrrdr ++−= λα     (3) 

( ) ,ˆ)( tttt Zdvdtvvdv ξξηγγ ++−=     (4) 

where  and  are two Brownian motions under Q that have a correlation coefficient 

of ρ, and  λ and η are the risk premiums associated with interest rate risk and volatility 

risk, respectively. 

tŴ tẐ

 In this paper we choose to use the above FV interest rate model for the following 

three reasons. First, it is well known that the dynamics of interest rates can not be 

adequately captured by a single factor. Instead, at least a two-factor model should be used 

(see e.g. Litterman and Scheinkman (1991)). Second, the FV model is intuitive. In 

particular, it captures the mean reversion exhibited by both the level and the volatility of 

interest rates. Furthermore, the process for the interest rate variance vt in equation (2) 

suggests that although a quiet market (where volatility is low) might become highly 

volatile in time, it will not do so abruptly; in contrast, a very unstable market (where 

volatility is high) may cool down quite quickly or become even more volatile over a short 

time period, as we would observe in reality. Third and most importantly, the FV model 

uses a separate process to model interest rate volatility. As a result, in this model interest 

rate level and interest rate volatility become imperfectly correlated, which is borne out 

empirically in data. For example, Trolle and Schwartz (2008) in their study of interest 

rate caps, swaptions, and LIBOR/swap rates find that although innovations to interest 

rates and innovations to their volatility are correlated, the correlation is far from perfect 

(see their Footnote 3). The FV model can accommodate this feature of the data.        
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The FV model can generate various shapes for the yield curve, as shown in 

Figures 3 – 5. The FV model also allows for a closed-form solution to zero-coupon (or 

discount) bond price. But the original solution given in Fong and Vasicek (1991) involves 

complex algebra and is difficult to implement in practice. Selby and Strickland (1995) 

introduce an alternative method to compute the discount bond prices in the FV model. 

The Selby and Strickland method is based on the Frobenius series and is both accurate 

and fast. Finally, using Monte Carlo simulation Clewlow and Strickland (1997) show 

how to price various interest rate derivatives within the FV model. In this paper, we 

extend the Frobenius series method proposed in Selby and Strickland (1995) to price a 

variety of interest rate derivatives under stochastic volatility in an affine term structure 

model. Our approach is precise and much speedier than the Monte Carlo simulation 

method suggested in Clewlow and Strickland (1997). In addition, our approach can be 

generalized to other affine interest rate models as well. 

[Figures 3, 4, and 5 are about here.] 

 

3. Pricing of discount bond options 

 

 This section illustrates the pricing of call options on zero-coupon bonds[3][4]. 

Consider a call option with a maturity of T years written on a zero-coupon bond of a 

maturity of θ years and with a strike price of K. We use ),( θTP  and ),,,( KTtCall θ  to 

denote the price of the underlying zero-coupon bond and the time t price of this call 

option, respectively. Under the risk-neutral probability measure Q, the call option price is 

given as  
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where  denotes the expectation under the measure Q conditional on all the 

information available up to time t. Using the two forward measures Q

( )⋅Q
tE

T and Qθ that are 

equivalent to the measure Q, and defined by their Radon-Nikodym derivatives as  

,or    for ;
),(

),( θTM
MtP

MTPe
dQ

dQ

T

t
sdsr

M

=
∫

≡

−

   (6) 

we can rewrite equation (5) equivalently as[5] 

( ) ( ),1),(1),(),,,( ln),(lnln),(ln KTP
Q
tKTP

Q
t

T

ETtKPEtPKTtCall ≥≥ −= θθ

θ

θθ  (7) 

To compute the probability ( )KTP
Q
t

M

E ln),(ln1 ≥θ  for M = T or θ in (7), we have to first 

calculate its corresponding moment generating function 

( ,),(ln θϕ TPQ
t eE

M )       (8) 

where ϕ is a constant. In Appendix 1, it is shown that the moment generating function in 

equation (8) is equal to 
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for M = T or θ. The functions , , and  in (9) above are the functions 

consisting of the discount bond price  in the FV model. We refer the interested 

reader to Selby and Strickland (1995) for the details about these three functions. 
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For notational simplicity, we rewrite equation (9) as 
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with ),(),(0 MTDTDA +≡ θϕ , ),(),(0 MTFTFB +≡ θϕ , andC ),(),(0 MTGTG +≡ θϕ . 

Once we solve the moment generating function ( )),(ln θϕ TPQ
t eE
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cumulative probability  by applying the Fourier inversion 

transform  
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where  denotes the real part of a complex number. In equation (11) the integrand is 

well-defined and the integral is convergent. Finally, although the integral in (11) can not 

be solved in closed-form, numerical techniques can be used to approximate its value (see 

e.g. Heston (1993)). In this paper, we follow Sullivan (2000, 2001) and Tahani (2004) 

and use the Gauss-Laguerre quadrature rule to compute the value of the integral in 

equation (11). 

{}⋅Re

Before computing the moment generating function ( )),(ln θϕ TPQ
t eE

M

, it is helpful to 

first value the following “generalized” zero-coupon bond price[6] 
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Denote tT −≡τ , we can rewrite the above “generalized” bond price as ),,,( ωϕψτP . 

We assume the following functional form 

.),,,( )()()( τττωϕψτ CvBrAeP ++−=     (13) 

We show in Appendix 2 that the system of the ordinary differential equations (ODEs) 

satisfied by the functions )(τA , )(τB , and )(τC  is the following 

;)0(, ϕψα =+−=′ AAA      (14) 

;)0(,
2
1))((

2
1 222 ωλρξξηγξ −=+−++−=′ BAABABB  (15) 

.0)0(, =+−=′ CBvArC γα     (16) 

In the above system of ODEs, A′  denotes 
τ∂
∂A , B′  and C′  are defined analogously; and 

ϕ=)0(A , ω−=)0(B , and 0)0( =C  are the initial conditions. 

The ODE in (14), which is for function A, can be solved in simple closed-form as 

,)( ατ

α
ψϕ

α
ψτ −⎟

⎠
⎞

⎜
⎝
⎛ −+= eA  and function C can be found by direct integration once we 

know both functions A and B. The difficult part lies in solving the ODE for B in (15), 

which is a Riccati equation. A Riccati equation is one type of nonlinear first-order ODE. 

In the current case, although function B can be found in closed-form, the solution is fairly 

complicated and contains complex algebra (see Tahani (2004)). 
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 To overcome this difficulty, we follow Selby and Strickland (1995) and make a 

simple substitution 

.
2

)0(,1)0(,)(
2
1exp)(

2
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2 ωξξτ
τ

=′=⎟⎟
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⎞
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This substitution transforms the nonlinear ODE for B in (15) into an equivalent linear 

second-order ODE for U. Under this substitution, functions B and C can be rewritten as 

,
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)('2)( 2 τ

τ
ξ

τ
U
UB −=       (18) 

).(ln2)()( 2
0

τ
ξ
γατ

τ

UvdssArC −−= ∫     (19) 

Therefore the solution to the “generalized” zero-coupon bond pricing formula in (13) 

amounts to evaluating )(τU  and ).(' τU  A further substitution 

;10),ln(1),()( ≤≤−== zzzSzU
α

ττ β    (20) 

where β is a constant to be determined, reduces the ODE for U to a homogeneous linear 

ODE of second order for S, which can be solved by using a Frobenius series solution 

method. Once we obtain the solution to S, we can retrace, substituting S back into 

equation (20) for U, and then substituting U back into (18) and (19) for functions B and 

C, respectively. For computational details, please refer to Appendix 3. 

 

4. Valuation of options on coupon bonds and other derivatives 

 

We now extend the valuation approach in the previous section to the pricing of 

coupon bond options and other interest rate derivatives. 

 

4.1 Coupon bond options 

 

Following Munk (1999), we approximate the price of a coupon bond option using 

an option on a zero-coupon bond that has the same stochastic duration as the coupon 

bond. In particular, consider a coupon bond paying  at time , i = 1, 2, …, n. The price ia it
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of this bond at any time  is given by  where  is the time t 

price of the discount bond that matures at time . A straightforward application of Itô's 

lemma yields 
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where the weight ,
)(

),(
),(

tH
ttPa

tta ii
ii = ),,,( tti vrttμ  is a function of the model's 

parameters, and the functions  and  are the functions involved in 

computing the zero-coupon bond price  in the FV model. Another direct 

application of Itô's lemma, for the zero-coupon bond price, results in 

),( ittD ),( ittF
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−+= ξμ   (22) 

The stochastic duration )(tδ  is defined as the time to maturity of the discount bond that 

has the same relative volatility (please refer to Munk (1999) for a definition of relative 

volatility) as the coupon bond. More specifically, )(tδ  is the solution to the following 

equation 
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Clearly, equation (23) has to be solved numerically. Once )(tδ  is computed, the price of 

the coupon bond option can be approximated by a multiple of the price of the option on a 

zero-coupon bond with a time to maturity equal to )(tδ . More formally, the price of a 

call option on the coupon bond defined above is approximated by[7] 

),),(,,(),,(
ζ

δζ KttTtCallKTtCall BondCoupon +≅   (24) 
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where 
))(,(

)(
tttP

tH
δ

ζ
+

=  and )),(,,(
ζ

δ KttTtCall +  is the time t price of a call option 

with a maturity of T years and a strike price of 
ζ
K  written on a discount bond of a 

maturity of 

 )(tt δ+  years. The put option price can be approximated similarly. 

 

4.2 Swaptions 

 

A swaption (or option on an interest rate swap) is an option to exchange 

periodical fixed-rate payments for floating-rate payments. When the swap is created, the 

floating-rate payments have a present value equal to the notional principal of the swap. 

The swaption can therefore be valued as a coupon bond option with a strike price equal to 

the principal amount of the underlying swap (see Hull (2006)). 

 

4.3 Interest rate caps, floors, and collars 

 

An interest rate cap or floor provides the right to get payoffs at periodic dates 

called the reset dates. At each reset date, the interest rate cap/floor has a payoff that is the 

same as the payoff from a zero-coupon bond put/call option. Therefore, the interest rate 

cap/floor can be seen as a sequence of many puts/calls called caplets or floorlets, 

respectively. The cap/floor premium is then equal to the sum of the corresponding 

caplets/floorlets premiums. In particular, the price of an interest rate cap with reset dates 

nii ≤≤1)(θ  and a cap rate  is given by capr

,),,()1(),)(,(
1

1
,11 ∑

−

=
+≤≤ Δ+=

n

i
capiicapcapnii KtPutrrtCap θθθθ   (25) 

where ,
1

1
θΔ+

=
cap

cap r
K  θΔ  is the reset interval, and ),,( ,1 capii KtPut +θθ  is the price of 

a zero-coupon bond put option. 
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Similarly, the price of an interest rate floor with reset dates nii ≤≤1)(θ  and a floor 

rate  is given by floorr

,),,()1(),)(,(
1

1
,11 ∑

−

=
+≤≤ Δ+=

n

i
flooriifloorfloornii KtCallrrtFloor θθθθ  (26) 

where 
θΔ+

=
floor

floor r
K

1
1  and ),,( ,1 floorii KtCall +θθ  is the price of a zero-coupon bond 

call option. 

A collar is another popular interest rate derivative. It is simply a combination of a 

long position on an interest rate cap and a short position on an interest rate floor with the 

same characteristics (i.e., the same settlement dates and the same reset intervals etc.). It 

follows that the collar can simply be priced as the difference between the price of the 

long cap with a strike price Kcap and the price of the short floor with a strike price Kfloor.  

 

5. Numerical examples 

 

This section presents some numerical examples to assess the accuracy and the 

efficiency of the proposed approximation with different sets of parameters. The 

benchmark prices are either given by closed-form solutions such as the Jamshidian 

(1989) formula in the case of constant volatility Vasicek (1977) model, or by a Monte 

Carlo simulation based on 100,000 paths in the case of the FV (1991) stochastic volatility 

model. The parameters values used in our experiment are close to those adopted in 

Clewlow and Strickland (1997), and they are also generally consistent with the historical 

behavior of interest rates. 

 First, we assess the approximation within the Vasicek (1977) constant volatility 

model. For clarity and completeness, we present below the interest rate process in the 

Vasicek (1977) model, which can be interpreted similarly to the FV model in equations 

(1) and (2) 

.)( ttt vdWdtrrdr +−= α      (27) 

We consider the following set of parameters: 2.1=α , ,095.0=r  , and 

. We price a one-year at-the-money forward call on a five-year zero-coupon 

08.0=r

015.0=v
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bond with a face value of $1. The strike price K of this call option is $0.6392. Table 2 

shows how the approximate price converges to the benchmark price given by the 

Jamshidian (1989) formula for different quadrature orders as well as the associated 

absolute and relative errors. Note that an order of (as low as) 15 is sufficient to obtain a 

very accurate price. 

[Table 2 is about here.] 

 The second example is a one-year at-the-money forward call on a two-year zero-

coupon bond in the FV stochastic volatility model with the following set of parameters: 

2=α , ,07.0=r  , 08.0=r 0.02   v ==v , 2=γ , 2.0=λ , 0001.0=ξ , 1.0=η , and 

2.0=ρ . The strike price K of this call option is $0.9322. The third example is a one-year 

at-the-money forward call on a five-year zero-coupon bond in the FV model with the 

following set of parameters: 2=α , ,095.0=r  08.0=r , 0.015   v ==v , 2=γ , 2.0=λ , 

0001.0=ξ , 1.0=η , and 6.0=ρ . The strike price K of this call option is $0.6236. 

Tables 3 and 4 provide the approximate prices, the Monte Carlo prices, and their standard 

deviations for these two examples, respectively. It is shown in the tables that a high 

degree of accuracy can be achieved for a quadrature order of about 25. 

[Tables 3 and 4 are about here.] 

 We now provide some results for options on coupon bonds. Consider a one-year 

call on a five-year coupon bond with a semiannual coupon of $0.04 and a face value of 

$1. Tables 5 and 6 use the Vasicek (1977) model since we have a closed-form solution 

provided by Jamshidian (1989) to which we can compare our approximation. In both 

tables, we use the same parameters values as those in Table 2. Table 5 shows the results 

for an at-the-money call with a strike price K = $0.8767. The stochastic duration of this 

coupon bond is 3.5324 and the call price given by our approximation is $0.0733076, 

while in comparison the call price given by the Jamshidian solution is $0.0733027. Table 

6 does a similar analysis for an in-the-money call with a strike price K = $0.7970. The 

call price according to our approach is $0.144771, while the Jamshidian price is 

$0.144770. 

[Tables 5 and 6 are about here.] 

 Within the FV (1991) stochastic volatility model, Tables 7 and 8 compare our 

approximation to a Monte Carlo simulation using the same parameters values as those in 
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Table 4. The stochastic duration of the coupon bond is 2.8825. In Table 7, the at-the-

money strike price is $0.8557, the approximate call price is $0.0726108, while the Monte 

Carlo price is $0.0726402 with a standard deviation of 8.6275e-5. In Table 8, the in-the-

money strike price is $0.8150, the approximate price is $0.109902, while the Monte 

Carlo price is $0.109801 with a standard deviation of 8.8149e-5. 

[Tables 7 and 8 are about here.] 

 In all of the above numerical examples, the approximations based on the 

Frobenius series and the stochastic duration are found to be very accurate relative to 

either the closed-form solution given in Jamshidian (1989) or the Monte Carlo 

simulation. Finally, Table 9 contains a comparison of the computation time. The 

approximation method is found to be very fast, especially when compared to the Monte 

Carlo valuation method. Our approach can achieve a high degree of accuracy in less than 

one second of time on a standard computer. 

[Table 9 is about here.] 

 

6. Conclusion 

 

 This paper derives semi-closed-form pricing formulas for different interest rate 

derivatives under stochastic volatility. It extends the Fong and Vasicek (1991) valuation 

formula as well as the Selby and Strickland (1995) methodology. The main contribution 

consists of deriving the moment generating function of the zero-coupon bond as a 

Frobenius series. This allows us to easily price options on zero-coupon bonds by 

inverting the corresponding characteristic function using the Gauss-Laguerre quadrature 

rule. The approach is then applied to the pricing of coupon bond options, swaptions, 

interest rate caps, floors, and collars etc. The numerical analysis conducted shows that the 

combination of the Frobenius series and the quadrature rules provides a very accurate and 

fast valuation of a wide variety of interest rate derivatives. Although the approximation is 

developed for the FV model, it can be readily adapted to any other affine term structure 

models, including those models in which stochastic volatility of interest rates is not 

explicitly specified, provided that we adjust the “generalized” zero-coupon bond price 

defined in equation (12) accordingly.  
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 Our approach has many applications. To name just a few, first, our approximation 

method can be useful for pricing complex interest rate derivatives, such as mortgage-

backed securities (MBSs) and asset-backed securities (ABSs) since interest rate volatility 

is a key ingredient in determining the value of the prepayment option embedded in these 

securities. Second, our approach can be extended to value derivatives on other assets such 

as commodities. Third, our method can be applied to the risk management of fixed-

income portfolios and financial planning in general. Extending our approach to these 

applications is an interesting venue for our future research. 
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Notes 

     

1. Section 2 reports some empirical evidence in support of modeling the interest rate 

volatility as a separate process, different from the stochastic process that models the 

interest rate level. 

2. Dai and Singleton (2000) conduct a thorough specification analysis of various affine 

interest rate models. Also see Duffie and Kan (1996). 

3. Put options on zero-coupon bonds can be valued using the put-call parity formula: 

),,(),(),,,(),,, θθθ tPTtKPKTtCallKTPut(t −+=  where ),,, KTPut(t θ  denotes the 

time t price of a put option with a maturity of T years and a strike price of K written on a 

zero-coupon bond of a maturity of θ years. 

4. To save space, only call options are considered throughout the paper. The prices of put 

options on either discount bonds or coupon bonds can be easily calculated by applying 

the put-call parity (as shown in Endnote 3 above). We have also conducted the numerical 

analysis in Section 5 using puts. These results (not reported but are available upon 

request) support the findings in the paper.  

5. See Geman, El Karoui, and Rochet (1995) for the derivation of the forward measure 

and its use in option pricing. 

6. This is the cross-moment generating function of the joint distribution of the short rate, 

its volatility and its time-integral. In defining and computing this function, we actually 

extend the method in Selby and Strickland (1995) since they only compute zero-coupon 

bond prices, yet we calculate the moment generating function of zero-coupon bonds, 

which is used subsequently to compute interest rate derivatives prices.  

7. The approach of Jamshidian (1989) in which an option on a coupon bond is 

decomposed into a portfolio of options on discount bonds with adjusted strike prices is 

applicable only to one-factor models, so we can not use his approach here since the FV 

model is a two-factor model. 
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Appendices: Technical details 

 

Appendix 1: Derivation of the moment generating function 

 

The moment generating function of ),(ln θTP  under the forward measure  

for M = T or  θ is given by 
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where functions A0, BB0 and C0 are defined in equation (10). 

 

Appendix 2: Derivation of the ODEs in equations (14) – (16) 

 

Using the Feynman-Kac theorem, the cross-moment generating function defined 

in equation (12) must solve the following PDE 
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with the boundary condition . Assuming the following 

functional form in (13), , taking derivatives and 

substituting the resulted derivatives into the above PDE, we can easily show that 

functions A, B and C must solve the ODEs in equations (14) – (16). 
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Appendix 3: Derivation of the Frobenius series solution 
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ODE in equation (15), it is easy to see that U must solve the following second-order 

linear ODE 
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Assume the following Frobenius series  as a solution to the 

homogeneous ODE in equation (A.4) above. It can be shown that 

∑
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n
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0=ε  or αε −=1 . 

Moreover, the coefficients  are given recursively by nq
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where  is any arbitrary constant. The general solution to the function S can then be 

written as 
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Table 1: Summary statistics of the interest rate series 
 

 Min 1Q Median 3Q Max
3-Month US T-Bill 0.58 3.15 4.94 6.45 16.76
First order change -1.82 -0.05 0.00 0.06 1.92

  
 Mean Std. Dev. Skewness Kurtosis 

3-Month US T-Bill 5.175 2.808 1.104 4.828 
First order change 0.001 0.200 -0.681 25.761  

 
The interest rates data are weekly and are taken from the H.15 release at the Federal 

Reserve Board. The sample period is from January 1954 to December 2006.  
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Table 2: Zero-coupon call option in the Vasicek (1977) model 
 

Order Price Absolute error Relative error 
10 1.434E-02 3.36E-04 2.29E-02 
11 1.450E-02 1.68E-04 1.15E-02 
12 1.459E-02 7.91E-05 5.39E-03 
13 1.464E-02 3.47E-05 2.36E-03 
14 1.466E-02 1.41E-05 9.63E-04 
15 1.467E-02 5.35E-06 3.65E-04 
16 1.467E-02 1.85E-06 1.26E-04 
17 1.467E-02 5.65E-07 3.85E-05 
18 1.467E-02 1.90E-07 1.29E-05 
19 1.467E-02 3.98E-08 2.71E-06 
20 1.467E-02 1.67E-10 1.14E-08 
21 1.467E-02 1.55E-09 1.06E-07 
22 1.467E-02 8.44E-09 5.75E-07 
23 1.467E-02 5.58E-09 3.80E-07 
24 1.467E-02 8.19E-09 5.58E-07 
25 1.467E-02 1.65E-08 1.12E-06 
26 1.467E-02 1.12E-10 7.61E-09 
27 1.467E-02 1.05E-07 7.17E-06 
28 1.467E-02 6.63E-08 4.52E-06 
29 1.467E-02 5.40E-07 3.68E-05 
30 1.467E-02 5.06E-07 3.45E-05 

Benchmark price 1.467E-02     
 

In the table, Order is the order of the Gauss-Laguerre quadrature rule used in our 

approximation, Benchmark price is the call price given by the closed-form pricing 

formula in Jamshidian (1989), Price refers to the call price obtained by our semi-closed-

form solution, Absolute error is the absolute value of the difference between the 

Benchmark price and Price, and Relative error is calculated as 

.
priceBenchmark

PricepriceBenchmark −
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Table 3: Zero-coupon call option in the FV (1991) model 
 

Order Price Absolute error Relative error 
10 7.497E-03 3.00E-03 2.85E-01 
11 8.006E-03 2.49E-03 2.37E-01 
12 8.452E-03 2.04E-03 1.94E-01 
13 8.836E-03 1.66E-03 1.58E-01 
14 9.163E-03 1.33E-03 1.27E-01 
15 9.436E-03 1.06E-03 1.01E-01 
16 9.662E-03 8.31E-04 7.92E-02 
17 9.845E-03 6.47E-04 6.17E-02 
18 9.992E-03 5.00E-04 4.76E-02 
19 1.011E-02 3.84E-04 3.66E-02 
20 1.020E-02 2.93E-04 2.80E-02 
21 1.027E-02 2.24E-04 2.14E-02 
22 1.032E-02 1.72E-04 1.64E-02 
23 1.036E-02 1.33E-04 1.26E-02 
24 1.039E-02 1.04E-04 9.92E-03 
25 1.041E-02 8.35E-05 7.96E-03 
26 1.042E-02 6.88E-05 6.56E-03 
27 1.043E-02 5.84E-05 5.57E-03 
28 1.044E-02 5.15E-05 4.91E-03 
29 1.045E-02 4.59E-05 4.37E-03 
30 1.045E-02 4.35E-05 4.14E-03 

MC price 1.049E-02   
Std. Dev. 5.111E-05     

 
In the table, MC price is the call price given by a Monte Carlo simulation based on 

100,000 paths for the FV (1991) stochastic volatility model, and Std. Dev. is the 

associated standard deviation. The other terms used in the table are defined in Table 2. 
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Table 4: Zero-coupon call option in the FV (1991) model 
 

Order Price Absolute error Relative error 
10 4.958E-03 1.97E-03 2.85E-01 
11 5.294E-03 1.64E-03 2.36E-01 
12 5.588E-03 1.34E-03 1.94E-01 
13 5.841E-03 1.09E-03 1.57E-01 
14 6.057E-03 8.73E-04 1.26E-01 
15 6.237E-03 6.93E-04 1.00E-01 
16 6.386E-03 5.44E-04 7.85E-02 
17 6.506E-03 4.23E-04 6.11E-02 
18 6.603E-03 3.27E-04 4.71E-02 
19 6.679E-03 2.50E-04 3.61E-02 
20 6.739E-03 1.91E-04 2.75E-02 
21 6.784E-03 1.45E-04 2.10E-02 
22 6.819E-03 1.11E-04 1.60E-02 
23 6.844E-03 8.55E-05 1.23E-02 
24 6.863E-03 6.68E-05 9.64E-03 
25 6.876E-03 5.33E-05 7.69E-03 
26 6.886E-03 4.37E-05 6.31E-03 
27 6.893E-03 3.69E-05 5.33E-03 
28 6.897E-03 3.24E-05 4.68E-03 
29 6.901E-03 2.88E-05 4.15E-03 
30 6.902E-03 2.72E-05 3.93E-03 

MC price 6.930E-03   
Std. Dev. 3.351E-05     

 
The terms used in the table are defined in Table 3. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 27



Table 5: Coupon bond call option in the Vasicek (1977) model 
 

Order Price Absolute error Relative error 
20 7.330784E-02 5.15E-06 7.03E-05 
21 7.330785E-02 5.17E-06 7.05E-05 
22 7.330789E-02 5.20E-06 7.10E-05 
23 7.330790E-02 5.21E-06 7.11E-05 
24 7.330791E-02 5.22E-06 7.12E-05 
25 7.330786E-02 5.18E-06 7.06E-05 
26 7.330787E-02 5.19E-06 7.08E-05 
27 7.330794E-02 5.25E-06 7.16E-05 
28 7.330784E-02 5.16E-06 7.03E-05 
29 7.330778E-02 5.09E-06 6.95E-05 
30 7.330759E-02 4.90E-06 6.69E-05 

Benchmark price 7.330269E-02     
 
The terms used in the table are defined in Table 2. 
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Table 6: Coupon bond call option in the Vasicek (1977) model 
  

Order Price Absolute error Relative error 
20 1.447702E-01 5.06E-07 3.49E-06 
21 1.447701E-01 3.76E-07 2.60E-06 
22 1.447700E-01 3.40E-07 2.35E-06 
23 1.447700E-01 3.55E-07 2.45E-06 
24 1.447701E-01 3.70E-07 2.56E-06 
25 1.447700E-01 3.35E-07 2.31E-06 
26 1.447700E-01 3.31E-07 2.29E-06 
27 1.447699E-01 1.63E-07 1.13E-06 
28 1.447702E-01 4.60E-07 3.18E-06 
29 1.447694E-01 3.29E-07 2.27E-06 
30 1.447713E-01 1.59E-06 1.10E-05 

Benchmark price 1.447697E-01     
 

The terms used in the table are defined in Table 2. 
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Table 7: Coupon bond call option in the FV (1991) model 
 

Order Price Absolute error Relative error 
20 7.229855E-02 3.42E-04 4.70E-03 
21 7.242059E-02 2.20E-04 3.02E-03 
22 7.251866E-02 1.22E-04 1.67E-03 
23 7.258585E-02 5.43E-05 7.48E-04 
24 7.262409E-02 1.61E-05 2.21E-04 
25 7.263997E-02 2.04E-07 2.80E-06 
26 7.264134E-02 1.17E-06 1.60E-05 
27 7.263545E-02 4.73E-06 6.51E-05 
28 7.262645E-02 1.37E-05 1.89E-04 
29 7.261896E-02 2.12E-05 2.92E-04 
30 7.261076E-02 2.94E-05 4.05E-04 

MC price 7.264017E-02   
Std. Dev. 8.627500E-05     

 
 The terms used in the table are defined in Table 3. 
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Table 8: Coupon bond call option in the FV (1991) model 
 

Order Price Absolute error Relative error 
20 1.101486E-01 3.47E-04 3.16E-03 
21 1.099426E-01 1.41E-04 1.29E-03 
22 1.098145E-01 1.31E-05 1.19E-04 
23 1.097687E-01 3.27E-05 2.98E-04 
24 1.097814E-01 2.00E-05 1.82E-04 
25 1.098209E-01 1.95E-05 1.78E-04 
26 1.098617E-01 6.04E-05 5.50E-04 
27 1.098897E-01 8.83E-05 8.04E-04 
28 1.099033E-01 1.02E-04 9.28E-04 
29 1.099024E-01 1.01E-04 9.20E-04 
30 1.099024E-01 1.01E-04 9.20E-04 

MC price 1.098014E-01   
Std. Dev. 8.814900E-05     

 
 The terms used in the table are defined in Table 3. 
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Table 9: Computation time 
 

Method Computation time (in seconds) 
Monte Carlo 692 
Approximation 0.753  

 
In the table, Monte Carlo refers to a Monte Carlo simulation based on 100,000 sample 

paths, and Approximation is our semi-closed-form solution. Both methods are for the FV 

(1991) stochastic volatility model. 
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Figure 1: The weekly 3-month T-bill rates (in percentages) are taken from the H.15 

release at the Federal Reserve Board over the sample period of January 1954 to 

December 2006. 

 

Figure 2: The first order differences of the 3-month T-bill rates plotted in Figure 1. 

 

Figure 3: This graph plots an upward-sloping term structure of interest rates generated by 

the FV (1991) interest rate model with stochastic volatility. In the figure Yield is in 

decimals and Maturity is in years.   

 

Figure 4: This graph draws a downward-sloping yield curve resulted from the FV (1991) 

stochastic volatility model. In the plot Yield is in decimals and Maturity is in years.   

 

Figure 5: This plot graphs a humped-shaped term structure of interest rates generated by 

the FV (1991) interest rate model with stochastic volatility. In the graph Yield is in 

decimals and Maturity is in years.   
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Figure 1: Weekly 3-month U.S. T-bill rates 
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Figure 2: First order changes of weekly 3-month U.S. T-bill rates 
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Figure 3: Term structure of interest rates – normal curve 
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Figure 4: Term structure of interest rates – inverted curve 

 37



 

0.072

0.074

0.076

0.078

0.08

0.082

0.084

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Maturity

Yi
el

d

 
Figure 5: Term structure of interest rates – hump-shaped curve 
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